skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaeffer, Derek_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mini-magnetospheres are small ion-scale structures that are well suited to studying kinetic-scale physics of collisionless space plasmas. Such ion-scale magnetospheres can be found on local regions of the Moon, associated with the lunar crustal magnetic field. In this paper, we report on the laboratory experimental study of magnetic reconnection in laser-driven, lunar-like ion-scale magnetospheres on the Large Plasma Device at the University of California, Los Angeles. In the experiment, a high-repetition rate (1 Hz), nanosecond laser is used to drive a fast-moving, collisionless plasma that expands into the field generated by a pulsed magnetic dipole embedded into a background plasma and magnetic field. The high-repetition rate enables the acquisition of time-resolved volumetric data of the magnetic and electric fields to characterize magnetic reconnection and calculate the reconnection rate. We notably observe the formation of Hall fields associated with reconnection. Particle-in-cell simulations reproducing the experimental results were performed to study the microphysics of the interaction. By analyzing the generalized Ohm’s law terms, we find that the electron-only reconnection is driven by kinetic effects through the electron pressure anisotropy. These results are compared to recent satellite measurements that found evidence of magnetic reconnection near the lunar surface. 
    more » « less